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This investigation deals with the plane and axisymmetrical flows of an 
infinitely conducting gas, The conditions div pt~ = 0 and div H = 0 in 
this case allow the introduction of the stream function cp(x, y) and the 
magnetic field function x(x, y). The equations of motion of the gas are 
transformed and stated in terms of the variables v, and x. The resulting 
equations under certain additional assumptions have integrals, of which 
one is analogous to the Bernoulli integral and the other does not have 
any correspondence in ordinary gas dynamics. In the case of orthogonality 
of the magnetic field and the velocity field the solution of the problem 
reduces to a linear partial differential equation of the second order. 
Some particular solutions are also considered. 

1. Plane flows. Consider the steady plane flow of an ideal in- 
finitely conducting fluid. \Ye shall assume that the velocity v and the 
magnetic field intensity H have only two components v%, v , Hz, H , and 
that all characteristics of the flow are independent of $he t-cozrdinate. 

Under these assumptions the equation of induction may be integrated 

VJr~ - c& = a = const # 0 (f.1) 

Because of the conditions div pv = 0 and div H = 0 we can define two 
functions ~(n, y) and X(X, y) by the use of the following formulas 

8Y 
pvx=--p PV, =;, If r = -a_ 

ay 7 
H, = 2 (1.2) 

where the condition (1.1) transforms into the following: 

ay ax -- _ --- 
a~ ay 

;;$Jl(~*,“)=up (1.3) 
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The equations 

have the form 
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of conservation of momentum under the given assumptions 

We shall transform this system in terms of the new independent vari- 

ables v and x. To do this let us project equations (1.4) onto the direc- 

tion of the stream-line and the direction of the magnetic line. We obtain 

Using the properties of Jacobians, we have 

Analogously we find 

(1.10) 

From (1.2) and (1.8) to (1.10) there follows 

ax ay n 
ax 

VX =aax9 vu = - ap a’~, 5= ---wwy Hu = - aPay *(l.ll) 

Expressions of the form 

where f(r, y) is an arbitrary function, may be transformed in the follow- 

ing way 

af af af 
H,~xt&~y= --pan, (1.12) 

The expressions for the vorticity and the magnetic intensity stated 

in terms of the new coordinates y and x by using equations (l.ll), have 

the form 
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av, avx 
---_= 
ax ay pagy + p &(vkH_-j 

aH, aH, --- = 
ax ay 

p [& (v,H) + $ $1 

jl.l3) 

Sumarizing the results obtained, we have the system of equations 

(i.14) 

I ap a v2 a (v,H) ..------_-________~ 

P w ay 2 ax P 
o 

v&, - v,,H, = 0, ax 
vx = a ax , 

ay vv=aq, H, = apg 

H, = - ap $$ 

(1.15) 

(1.16) 

(1.17j 

It is easily seen, that when the scalar product of the velocity vector 
and the magnetic intensity does not depend on ‘t’ and the gas is isentropic, 

equation (1.15) is integrable 

where u is the velocity of sound. The integral just derived is analogous 

t3 the Bernoulli integral in ordinary gas dynamics. 

If the quantity (v, H)/p does not depend on x and the gas is isen- 

tropic, equation 

Ibis integral 

may be rewritten 

(1.16) also may be integrated 

P - ; = fz (x) (1.19) 

does not have a counterpart in ordicary gas dynamics. It 

in the following way: 

UP 
-=f+_.& 
T-1 

where I+, is the velocity of sound at the point of the given magnetic line 

at which the velocity is equal to zero. In this form equation (1.19) 

shows that along a magnetic line the hydrodynamic pressure anti the velo- 

city of sound increase with increase of velocity. When the magnetic fieltr 

and the velocity are orthogonal and the gas is isentropic, both integral:, 

are valid simultaneously in the following way 
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Jiere condition (1.1) becomes UH = a; using integrals (l.l), (1.18) and 

(1.19) quantities p, p, u, H may be expressed in terms of functions fl(v) 

and f2(x), which may be assumed to be known. 

2. Plane steady gas flows in an orthogonal magnetic field. 
Ye shall investigate more in detail, flows in which the magnetic field 

is orthogonal to the velocity field. As was shown in the preceding section 

the integrals (1.18) and (1.19) remain valid. In addition to these rela- 

tionships we have the condition of orthogonality and the condition (1.1) 

vxHz + VA, = 0, vxH, - vvHx = a (2.1) 

!Ience 

aHv a Ti, 
vz=~, %J=--- 

Taking into account (1.2), we obtain 

m w ax a’y w ax 
ay= ---, -- 

Hz ax ?% = H=ay 

or from (1.1) 

(2.2) 

(2.3) 

Hence, in this manner the problem is reduced to the solution of equa- 
tion 

or 

(2.5) 

‘l’he quantity < = up/H” may be f ound from the integrals (1.18) to 
(1.19) and therefore it may be considered a known function of the quanti- 

ties Y, x, 5 = 5(q~, x). 

In general equations (2.5) and (2.6) are complex but here we may con- 
fine our attention to the case where one of the functions Al or fz()o 
is constant. ‘ken 5 becomes a function of one variable only. Consider 
the case when Al = const. ‘Ihe quantities p, p, H and v depend only on 
the variable x, consequently, they will be constant along any magnetic 
line. Here 5 = g(x) and equations (2.3) are restated as follows: 

(2.7) 
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Hence it is seen that the function W(z) = Y(x, y) + iF(x, y) is 

analytic. However, not every harmonic function is a solution to the given 

problem. Conditions (1.18) to (1.19) require that four out of five of the 

quantities p, H, u, p and x must be functions of the fifth, therefore 

grad2$ = @ (x) or ) = O (2.8) 

Equation (2.8) may be transformed with the aid of (2.7) as follows 

As%ming (all, / a~) : (a$/ 8~) = - PV, /pvx = - a 8 = - z, we obtain 

(2.9) 

'Ihe general integral of equations (2.9) has the form 

52 (x2 - y, 2) = 0 (2. IO) 

where Q is an arbitrary function of two variables. Hence only those 

harmonic stream functions Y(x, y) can be solutions of the given problem 

for which the tangent of the angle of inclination of the velocity satis- 

fies equation (2.9) or (2.10). Co nsider the case where all the quanti- 

ties p, p, H and u depend only on Y; this is the case when f2()o =const. 
By reasoning in the same way as above it may be shown that the process 

of solution is then reduced to finding the harmonic function x(x, y), for 

which the tangent of the magnetic flux satisfies equation (2.9). 

3. Radial flow of a conducting gas in an orthogonal mag- 
netic field. In the simplest case the expression (2.10) may be repre- 
sented in the form 

xz - y = 0 or z=tule=y/x (3.1) 

Hence 8 = 'p, where 9 is a polar angle and, consequently, the stream 

lines are rays arising at the origin of the coordinate system. 'lhe lines 

of magnetic force are the circles F = const. 'Zhe quantities V, H, p, p 
and x are functions of F. Assuming 

W = 'Y + iF = iALn (5 + iy) 

we obtain 

W = - A tan-1 5 , F=Alnr (3.2) 
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Hence 

When we substitute the stated expressions for these quantities into 
the condition (1.18)) we obtain an equation which defines the density p 
as a function of radius F- (equation (1.19) for the determination of func- 

tion fz(x)) 

T A2 1 
- cpY-1 + ?__...-- 

a2r2p 

T-1 2 p2ra + - = const 
4nA2 

(3.4) 

From (3.3) it follows that 

‘Ihe given flow will be irrotational, but there will be a non-zero 
electric current in the gas. ‘l&is solution was obtained by other methods 
in [l,Z]. As may be shown easily, there exist two boundary circles r = R, 
and r = R, beyond which the solution may not be continued and an which 
the flow velocity quickly reaches the magneto-sound velocity. In the 
interval R, < r < R, there exist two types of flows, namely submagneto- 
sonic and supermagnetosonic. 

4. Plane vertical flow. Assume 

x = - A tan-~ : , f2 (x) = const 

‘llle gas rotates as a solid body in a radial magnetic field, Equation 
(1.19) may be used to determine the density 

_E__ pY-l _ g2 p.2 = * 
-r--1 (4.2) 

The pressure is determined from the condition that the flow be 
adiabatic. The solution is valid in the entire plane, except at the 
origin of the coordinate system. 

5. Steady axisynsetrical flows of an infinitely conduct- 
ing gas. Let us assume that the azimuthal components of the magnetic 
intensity and the velocity of flow are equal to zero and that none of 
the characteristics of flow depend on the angle g, in the cylindrical 
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coordinate system. In this case we may introduce the stream function y? 
and ,the magnetic force function X: 

‘Ihe equation of induction is integrable here as it is in the plane 
case, and we obtain 

r (Hrz7z - vrHr) = a = c,onst (5.2) 

hs in the plane case, the equation of motion may be transformed into 
an equation in terms of variables ry and x. By reasoning in the same 
manner as in Section 1, we obtain 

az ar 
vz=ax, vr = aFx, Hz = -up&, H,=-aap$ 

The integral (5.2) differs from the integral in the plane case in that 
its left side is multiplied by r. By making corresponding assumptions 
about the character of the functions (vH) and vH/p and the barotropic 
dependence of the pressure on the density, the first two equations of 
(5.3) may be integrated and particular solutions are obtained which cor- 
respond to those obtained previously. 
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